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S U M M A R Y  
The generalized sampling theorem is used to facilitate the solution of a conjugated boundary value problem of the 
Graetz type. The analysis is applied to determine the effects of axial conduction on the temperature field in a fluid in 
laminar flow in a tube. This represents tile first application of the sampling theorem outside of the area of communica- 
tions theory. 

1. Introduction 

The temperature field in the thermal entry region for Poiseuille flow in a heated circular tube 
is governed by the axisymmetrical thermal energy equation in cylindrical coordinates, which 
in dimensionless form is 

OT 1 0  ( r O T )  1 0 2 T  
( 1 - r  2) ax - r 0 r . ~  + P+~ #x 2 ' (1) 

where the P6clet number is defined by P 6 = u m r o / ~  , u m is the maximum velocity in the tube, 
r o is the tube radius and c~ is the thermal diffusivity. The dimensionless radial and axial co- 
ordinates, x and r respectively, and the dimensionless temperature T are defined by 

r = r ' / ro ,  x = x ' / r  o P6 ,  T = ( T ' -  To) / (T  w -  To) 

where the prime refers to dimensional quantities, and T o is the constant and uniform tempera- 
ture of the fluid at the tube inlet (assumed to be far upstream of the heated region). We shall 
consider the heated portion of the tube to have constant wall temperature Tw, but other 
boundary conditions can be treated in the manner to be considered here. This problem and the 
related problem of flow between heated parallel plates are usually called the Graetz problem ; 
and, as indicated by Porter's review [1], it has been extensively studied since Graetz [2] 
examined it in 1885. Graetz neglected the axial conduction term, the last term in (1), but for 
low velocity flows and for liquid metals (systems for which P6< 100) the axial conduction 
cannot be neglected. Hsu [3, 4] obtained exact solutions for (1) for constant heat flux at the 
wall and for Newton's law of cooling boundary conditions in the heated region, but his analyses 
are not physically correct because he neglected the axial conduction across the plane x = 0  
(assumed here to be the inlet of the heated section). He decoupled the upstream (x < 0) tempera- 
ture field from the temperature field in the heated region (x > 0) by assuming the temperature 
distribution at x=  0 to be uniform at the inlet temperature To. 

Schneider [5] and Agrawal [6] correctly formulated the problem, recognizing that axial 
conduction will distort the temperature distribution at x = 0 if the Paclet number is small 
(P6 < 100). Agrawal attempted to solve the problem for Poiseuille flow between parallel plates, 
but computational difficulties prevented him from satisfactorily matching the solutions at 
x--0 + and x = 0 - .  Schneider, on the other hand, solved the special case of Newton's law of 
cooling in the upstream (x < 0) and downstream (x > 0) regions for plug flow (uniform velocity 
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profile) in a circular tube and between parallel plates. Schneider's special case does not involve 
the difficulty of matching the solutions in the two domains that Agrawal encountered, but  such 
simplification does not apply to other boundary conditions including the one we consider here. 

It is the purpose of this paper to show that the Graetz problem with axial conduction can be 
solved by applying the generalized sampling theorem to relate the coefficients in the series 
expansion of the temperature fields in the two domains, thereby eliminating the need for 
approximations and numerical matching procedures. To illustrate the procedure we shall 
examine the case of plug flow in a circular tube perfectly insulated in the region (x < 0) and 
maintained at constant wall temperature T w in the region (x > 0). The analysis can be extended 
to Poiseuille flow in tubes and between parallel plates and to other commonly encountered 
boundary conditions. 

2. Analysis 

For plug flow at the average velocity in the tube (1) reduces to 

8 T / _ l  8 (r0T/~ 1 82T/ 
Ox r 8 r ~  8r/] + P5 2 Ox 2 ; i = 1 , 2  (2) 

where in this case P5 = 5ro/Ct and ~ is the average velocity. We shall consider the temperature 
fields 7"1 and T2 in the two domains - oo < x < 0; 0 < r < 1 and 0 < x < oo ; 0 < r < 1, respect- 
ively. The boundary conditions are 

lim T1 (x, r) = 0 
X - - +  - -  o o  

T.r3 
v : l  (x, 1 ) = 0  
8r 

8T 1 (x, 0) = 0 
8r 

lim T 2 (X, r) = 1 
x- - -~  oO 

T2 (x, 1)-- 1 

8T2 (x, 0) = O. 
Or 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

The temperature fields must also satisfy the compatibility conditions 

T1 (0, r) = T2 (0, r) (9) 

0T1 (o, r) = oT: (o, r) 
8x ~-x " (10) 

Problems involving two or more temperature fields coupled through compatibility conditions 
at a mutual boundary have been called conjugated boundary value problems. We shall solve 
the conjugated boundary value problem described by (2) to (10) by applying the finite Hankel 
transform to obtain series solutions for the temperature fields T 1 (x, r) and T2 (x, r). Then we 
apply the compatibility conditions, using the generalized sampling theorem as it was applied 
by Jerri [-7, 8] to obtain relations among the coefficients of the eigenfunction expansions 
T1 (0, r) and T 2 (0, r) to solve for these coefficients. 

For  the region x > 0 let us apply the finite Jo-Hankel transform pair 

f ' 
(11) 

do  
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f(r) = ~ 2f(2~176176 (12) 
.=1 J~ (20,.) 

where 2o .  is chosen such that condition (7) is satisfied, i.e. Jo (2o.) = 0, n = 1, 2 . . . .  Transforming 
(2) and using (7) we obtain 

1 d2T2 d e  2 2 2 n r  = -2o. .J~(2o, .) ,  for x > 0 .  (13) 
P6 2 dx 2 dx 

To solve (13) we note that condition (6) transforms to 

lim Tz (x, 20.) - J* (20.) (14) 
X~-+ 09 2 0 J l  

Hence the solution to (13) is 

A0,n 
where 

422 \~ 
B(&,.)= 1 + ~ )  ' 

The inverse of (15), using (12), is 

2C(2o.)Jo(2o.r)  ex fxP62 r2(x,r)= 1 + ~ ~ '  p ~ ] ~ - -  [ 1 - B ( 2 o , . ) ] j , x > 0 .  (16) 
n = l  

It is clear that  (16) satisfies (2), (6), (7) and (8). 
For  the region x < 0 we apply the transform pair 

i 1 f(21,.) = rJo(21.r)f(r)dr (17) 
0 

/ ( r )  = ~ 2f(2a")J~ (18) 
.=1 J2(21,.) 

where Jt (21.) = 0 to satisfy condition (4). Thus (2) transforms to 

1 d2T1 d~l 2~,.T1=0 x < 0  (19) 
P6 2 dx  2 dx 

where we have used condition (4). To solve (19) we again note that (3) transforms to 

lim T1 (x, 21,.) = 0 .  (20) 
x - ~  - o o  

Hence the solution to (19) is 

~l (x, 21,.)= D (21,.) exp { ~ [l + B(21, n) ] } (21) 

where 
/ 422.)  ~ 

B(~l ,n)  = ~1 + p 6 z /  . 

Using the inversion formula (18) we obtain 

.=1 Jg(21,.) exp [1+B(21, . )]  , x < 0 .  

(22) 

Equation (22) satisfies (2), (3), (4) and (5). It remains to determine the coefficients C(2o,.) and 
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D(2~..) in (16) and (22), respectively. To this purpose we use the compatibility conditions (9) 
and (10) together with the following sampling theorem, which will aid considerably in finding 
relations between the coefficients C(2o..) and D(21..). 

3. The sampling theorem 

Given 

f(2) = f ,  p (y) K (y, 2)f(y)dy (23) 

where {K(y, 2.)) is a complete orthogonal set on the finite interval I, and f(y) is square in- 
tegrable then 

f(2) = ~ f(2.)S(2,2.) (24) 
. = 1  

where the sampling function is defined by 

.1( t p(y) K (y, 2)K(y, 2.)dy 
S(2, 2.) = (25) 

f ,r p(y) IK(y, 2") 12 dy 

The proof is readily established when we write the orthogonal expansion for f(y) in (23), 

f(y) = ~ C.K(y, 2.), 
n = l  

f p(y)f(y) K(y, 2.)dy 

f,  P(Y)IK(Y') .)I2dY J, O(Y)IK(Y'2.)I2dY 
then multiply both sides by p (y)K (y, 4) and integrate to obtain 

f ,  p(y)K(y, 2)f(y)dy=f(2)= .=a ~ f(2.)S(2, 2.) 

after using (23) for f(2.) and (24) for S(2, 4.). 

4. Application of the sampling theorem 

For the special cases of interest here, (11) and (17). the sampling functions are 

22o,. Jo (2) 
S~ (2,)~o,.) = (22._ 22)j~ (20.) 

and 

(26) 

22 J1 (2) (27) S2(2,21.) = ( 2 2  2 
- 2 , , . ) J o ( 2 , , . )  

respectively. We note that S 1 (2o.,., 20.) = 6m,. and $2 (21,m, 21,n)  = t~rn,n. Now recognizing that 
the coefficients C(2o,.) and D(2~,.) have the form of (23), we can write 

C(2) = ~ C(2o,.)S~(2,2o..) (28) 
. = 1  

and 

D(2) = ~, D(2~,.)Sz(2,2a,.). (29) 
. = 1  

Journal of Engineering Math., Vol. 8 (1974) 1-8 



The samplin9 theorem applied to boundary value problems 5 

Applying compatibility condition (9) to T2(0, r) and 7"1 (0, r) obtained from (16) and (22), 
respectively, we have 

s 2D(21,.)Jo(2i,.r ) 2C jg(21,.) = 1 + s (20.)Jo(2o,.r) (30) 
.=~ .= l  J~(2o,.) 

Multiplying both sides of (30) by r Jo (2r)dr and integrating term by term from 0 to 1 we obtain 

D(&,. )S2(2,  &, .)  = 
J l (2)  

+ /~ C(~o,n) Sl(2,2O,n) (31) 
T n = l  

which, after employing (28) and (29), becomes 

O (2)- C (4) - s~ (4) (32) 
2 

Next we apply compatibility condition (10) to give 

20 (2a,.)[I + B(21,.)] Jo(2a,. r) 
, : i  ~ Jo2(21,.) 

2C(2o,.) [1 -B(2o,.)] Jo (2o,. r) 
(33) 

.z" = 1  Jo ~ (40 ,.) 

Multiplying both sides by r J o (2r)dr and integrating as before we obtain 

D(2) + ~ D(2i,.)B(2i,.)S20~, 2i,.) 
n = l  

= C ( 2 ) -  s C(2o,.)B(2o,.)S,(2,2o,.) (34) 
n=l 

where we have applied the sampling theorem to the first terms in the square brackets in (33) but 
not to the terms involving B(21,.) and B(2o,.). Applying (32) after rearranging (34) we obtain 

~. ~ Ji(2) (35) - C(2o,.)B(2o,.)Si(2, 2o,.) = D(2i'")B(2i'")S2(2' 21'n) "~ T 
n=l n=l 

To solve for C(2o,.) we let 4=40,,. in (35), noting that $1(2o,,., 2o,.)=6m,.. Thus 

J1 (40 m) 
- C (20,m) B ()b,,.) = ~ D (41,,/) B (Zi,.) $2 (2o,,., 41,.) + ~ '  (36) 

n = 1 20,m 

To eliminate D(21,.) in (36) we use (32) with 2=21,. to express C(2o,") in terms of C(2i,.). 
The result is 

- C (4 o,m) B (2O,m) = 

J , ( 2 ,  n)l J i  ()~O'm) : ,_, c(2,,.) + , ~  ,(21,~ 2,,.) + (37) 
J 20--- ~ -  r t = l  , , 

Since 21,1 =0 we can write 

J1(21,.) / �89 for n = l  

0 zi, .  for n ~ 1 
and 

82(2O,m, 41,1 ) __ 2Ji(2o,") 
2 0 , m  

Using (28) with 2=21,. we obtain a relation between C(2~,.) and C(2o4 ) as follows 
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oo 

: Z  o,j) 
j = l  

and since 41,1 = 0  we have 

2 
S1 (21,1,/~O,m) - 2o,"J1 (2o,")" 

Eliminating C(21,,) from (37) using (38) we obtain 

- C (2o,") B (2o,") = 

= ~ ~ C(~o,j) gl(~l,n,'~o,j) B(~l,n) S2(~o,m, ~l,n) "[- - -  
n = l  j = l  

Interchanging the order of the summations and defining 

K(2o,", 2o,~) -= ~ B(21,,)$2(2o,", 2a,,)$1(2,,., 2o.j) 
n = l  

then (39) reduces to 

2J1  (20,m) Z 
j = l  

(38) 

2J1 (2o,m) 
20,m 

(39) 

(4o) 

(41) 

Now (41) can be solved to obtain the coefficients C (20,,,), and the coefficients D (21 ") are cal- 
culated by applying (38) and (32). 

5.  R e s u l t s  

Once the coefficients C (20,") and D (21,") are known the temperature fields are obtained from 
(16) and (22). The coefficients C(2o,,,) have been obtained by writing the infinite sequence of 
equations for C(2o,1), C(2o,2) . . . .  from (41) as a matrix equation, truncating the system and 
solving the resulting matrix equation by a matrix inversion routine. The matrix equation to be 
solved is A Z  = Y where Z and Y are column matrices defined by Z = { z  1Z2. . .Zn}  with zi  = C(2o,i) 
and Y-= {YlY2...Y.} with 

2J1 (2o,i) 
Yl - 2o,i ' 

respectively. The matrix A -  (aij) has the coefficients given by a u = K (2o,i, 2oj) + fii,jB (2o,i). 
Numerical computations have been performed for several P6clet numbers, and typical 

results are presented in Table 1 and in Figures 1, 2 and 3. The coefficients C(2o,"), which are 

TABLE 1 

The coefficients C(2o,m)for various Pdclet numbers 

m P 6 =  1 P 6 = 3  P 6 =  5 P 6 =  10 

1 -0 .0587876 -0 .132404 -0 .168412 -0 .199655 
2 0.0097031 0.023382 0.032488 0.046058 
3 -0.0037665 -0 .009135 -0.012793 =0.019164 
4 0.0019858 0.004827 0.006733 0.010258 
5 -0.0012263 -0 .002989 -0 .004134 -0.006341 
6 0.0008342 0.002041 0.002801 0.004300 
7 --0.0006060 --0.001491 --0.002024 --0.003111 
8 0.0004618 0.001155 0.001533 0.002361 
9 --0.0003649 --0.000914 --0.001204 --0.001858 

lO 0.0002969 0.000753 0.000973 0.001506 
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required to determine the temperature distribution in the heated region, are tabulated in 
Table 1 for various P6clet numbers. 

Figures 1, 2 and 3 show temperature profiles at various axial positions for P6 = 1, 5 and 10, 
respectively. For P6 > 100 there is no appreciable effect of axial conduction, but the effects are 
very significant for P6 < 10. The solutions for the upstream (x < 0) and downstream (x > 0) 
temperature fields as x--+0 are shown to be in excellent agreement as indicated in the figures 
by the temperature profiles for x = + 0.00001. The solutions shown involved the use of twenty 

1.o I , , : �9 , ; ~  

~ 0 . 6 '  =-u.1 _~_z_ 
X = -+ 0.00001 u)  

(,q 
LU 
z J 0.4 
o 

z 
~--" 0 : 2  X : - - I  

C3 

I--  
0 I I t I I I I I i 

0 0.2 0.4 0.6 0.8 1.0 
r DIMENSIONLESS RADIUS 

Figure 1. Temperature profiles as a function of axial position for P6 = 1. - - - -  
(16). 

from Equation (22), - -  from Equation 

1.C 

< ~ o . e  
r,* 

No.6 

I.u 
~ 0.4 
Q 

Z 

.~0.2 
Q 

p-  

o 

I J , ' X - 1  ' i , t 

' / 5 , 0 ~  

X=-0.1 
. -q - -  , - - 1 - - t - - ' 1 "  - , - - i - -  F ' -  , -  

0.2 0.4 0.6 0.8 1.0 
r DIMENSIONLESS RADIUS 

Figure 2. Temperature profiles as a function of axial position for P6= 5 . - - - - f r o m  Equation (22), - - f r o m  Equation 
(16). 

1.0 

~ 0 . 8  

:E 
0.6 

~ 0 . 4  

~ 0.2 

0 
0 

I ~ ~ X=  1 J I ~ I I 

~ _ -  52~--_o.~_ 
0.2 0.4 0.6 0.8 1.0 
r DIMENSIONLESS RADIUS 

Figure 3. Temperature profiles as a function of axial position for p6 = 10 ____ from Equation (22), _ _  from Equatior~ 
(16). 
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terms in each series expansion for the temperature fields, but fifteen terms are satisfactory for 
most purposes. 

For P6 = 10 the temperature field near the wall is seen to be distorted in the upstream region 
due to axial conduction. The asymptotic solution in the upstream region is attained for [x f ~ 0.1, 
but in the downstream region the asymptotic temperature distribution is reached for Ixl > 1. 
As the P6clet number is decreased the effects of axial conduction become more pronounced, 
and for P6-- 1 the temperature field in the upstream region is affected for [xl > 1. It is to be 
expected that for sufficiently small P6clet numbers the axial conduction predominates over 
the convective transport of energy, and in the limit as P6~0 (~7~0) the governing equation 
reduces to the axisymmetrical Laplace equation in cylindrical coordinates 

r' Or' Or / + ~ = 0 (42) 

where the primes refer to dimensional quantities. In the limit as P6--,~ axial convection 
predominates over axial conduction, and the axisymmetrical conduction equation 

(43) kr J 
~x r ~r 

is recovered. 
We have treated the model of plug flow to illustrate the application of the sampling theorem, 

but the method can be applied to Poiseuille flow in tubes and between parallel plates. The 
physical interpretation provided here should extend to more realistic flows, in fact, the effect 
of axial conduction must be more pronounced for flows in which the velocity vanishes at the 
wall because axial convection is then reduced in the vicinity of the wall: This suggests that Hsu's 
assumption that the boundary condition at x = 0 can be assumed a priori to be the constant 
inlet temperature is not physically correct nor mathematically justifiable. 

R E F E R E N C E S  

[1] J. E. Porter, Heat Transfer at Low Reynolds Number (Highly Viscous Liquids in Laminar Flow), Trans. Instn. 
Chem. En#rs., 49 (1971) 1-29. 

[2] L. Graetz, Uber die Warmeleitungsfahigkeit von Fliissigkeiten, Annln. Phys., 18 (1883) 79-84. 
[3] C-J. Hsu, Exact Solution to Entry-Region Laminar Heat Transfer with Axial Conduction and the Boundary 

Conduction of the Third Kind, Chem. Eng. Sci., 23 (1968) 457=468. 
[4] C-J. Hsu, An Exact Mathematical Solution for Entrance-Region Laminar Heat Transfer with Axial Conduction, 

Appl. Sci., Res., 17 (1968) 359-376. 
[5] P. J. Schneider, Effect of Axial Fluid Conduction on Heat Transfer in the Entrance Regions of Parallel Plates 

and Tubes, Proc: J. Fluid Mech. Heat Transfer Inst., (1956) 41-57. 
[6] H. C. Agrawal, Heat Transfer in Laminar Flow between Parallel Plates at Small P6clet Numbers, Appl. Sci. Res., 

9 (1960) 177-189. 
[7] A. J. Jerri, On the Applications of Some Interpolating Functions in Physics, J. Res. N.B.S., 73B (1969) 241-245. 
[8] A. J. Jerri, Application of the Sampling Theorem to Time-Varying Systems, J. Franklin Inst., 293 (1972) 53-58. 

Journal of Enoineerin9 Math., Vol. 8 (1974) 1-8 


